
Complimentary and personal copy

www.thieme.com

SYNFACTS Highlights in Chemical Synthesis

This electronic reprint is provided for noncommercial and personal use only: this reprint may be forwarded to individual colleagues or may be used on the author's homepage. This reprint is not provided for distribution in repositories, including social and scientific networks and platforms.

Publishing House and Copyright: © 2025 by Georg Thieme Verlag KG Oswald-Hesse-Straße 50 70469 Stuttgart ISSN 1861-1958 Any further use

Category

Synthesis of Materials and Unnatural Products

Key words

Pictet-Spengler polymerization

pyranoazacoronenes

covalent organic frameworks

porous graphenes

K. COE-SESSIONS, A. E. DAVIES, B. DHOKALE, M. J. WENZEL, M. M. GAHROUEI, N. VLASTOS, J. KLAASSEN, B. A. PARKINSON, L. DE SOUSA OLIVEIRA*, J. O. HOBERG* (UNIVERSITY OF WYOMING, LARAMIE, USA)

Functionalized Graphene via a One-Pot Reaction Enabling Exact Pore Sizes, Modifiable Pore Functionalization, and Precision Doping *J. Am. Chem. Soc.* **2024**, *146*, 33056–33063, DOI: 10.1021/jacs.4c10529

Graphene-Like Covalent Organic Frameworks

Significance: Although having mostly ordered 2-dimensional lattices, the rotational motions of the single bonds would cause non-negligible defects in covalent organic frameworks (COFs). Here, a set of graphene-like functionalized COFs with uniform pores are realized.

Comment: By harnessing the highly effective one-pot, four-step tandem Pictet–Spengler reaction, a series of COF materials composed of all-fused pyranoazacoronene, void of single-bond linkage in the two-dimensional scaffold, are accomplished.

SYNFACTS Contributors: Dahui Zhao, Beidi Yu Synfacts 2025; 21(03), 250 Published online: 25.02.2025

DOI: 10.1055/a-2518-3856; Reg-No.: S03425SF